3.4.16 \(\int x^2 (A+B x) \sqrt {a+c x^2} \, dx\) [316]

Optimal. Leaf size=104 \[ -\frac {a A x \sqrt {a+c x^2}}{8 c}+\frac {B x^2 \left (a+c x^2\right )^{3/2}}{5 c}-\frac {(8 a B-15 A c x) \left (a+c x^2\right )^{3/2}}{60 c^2}-\frac {a^2 A \tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{8 c^{3/2}} \]

[Out]

1/5*B*x^2*(c*x^2+a)^(3/2)/c-1/60*(-15*A*c*x+8*B*a)*(c*x^2+a)^(3/2)/c^2-1/8*a^2*A*arctanh(x*c^(1/2)/(c*x^2+a)^(
1/2))/c^(3/2)-1/8*a*A*x*(c*x^2+a)^(1/2)/c

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 104, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {847, 794, 201, 223, 212} \begin {gather*} -\frac {a^2 A \tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{8 c^{3/2}}-\frac {\left (a+c x^2\right )^{3/2} (8 a B-15 A c x)}{60 c^2}-\frac {a A x \sqrt {a+c x^2}}{8 c}+\frac {B x^2 \left (a+c x^2\right )^{3/2}}{5 c} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^2*(A + B*x)*Sqrt[a + c*x^2],x]

[Out]

-1/8*(a*A*x*Sqrt[a + c*x^2])/c + (B*x^2*(a + c*x^2)^(3/2))/(5*c) - ((8*a*B - 15*A*c*x)*(a + c*x^2)^(3/2))/(60*
c^2) - (a^2*A*ArcTanh[(Sqrt[c]*x)/Sqrt[a + c*x^2]])/(8*c^(3/2))

Rule 201

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[x*((a + b*x^n)^p/(n*p + 1)), x] + Dist[a*n*(p/(n*p + 1)),
 Int[(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && GtQ[p, 0] && (IntegerQ[2*p] || (EqQ[n, 2
] && IntegerQ[4*p]) || (EqQ[n, 2] && IntegerQ[3*p]) || LtQ[Denominator[p + 1/n], Denominator[p]])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 794

Int[((d_.) + (e_.)*(x_))*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((e*f + d*g)*(2*p
+ 3) + 2*e*g*(p + 1)*x)*((a + c*x^2)^(p + 1)/(2*c*(p + 1)*(2*p + 3))), x] - Dist[(a*e*g - c*d*f*(2*p + 3))/(c*
(2*p + 3)), Int[(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, p}, x] &&  !LeQ[p, -1]

Rule 847

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[g*(d + e*x)^
m*((a + c*x^2)^(p + 1)/(c*(m + 2*p + 2))), x] + Dist[1/(c*(m + 2*p + 2)), Int[(d + e*x)^(m - 1)*(a + c*x^2)^p*
Simp[c*d*f*(m + 2*p + 2) - a*e*g*m + c*(e*f*(m + 2*p + 2) + d*g*m)*x, x], x], x] /; FreeQ[{a, c, d, e, f, g, p
}, x] && NeQ[c*d^2 + a*e^2, 0] && GtQ[m, 0] && NeQ[m + 2*p + 2, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ
[2*m, 2*p]) &&  !(IGtQ[m, 0] && EqQ[f, 0])

Rubi steps

\begin {align*} \int x^2 (A+B x) \sqrt {a+c x^2} \, dx &=\frac {B x^2 \left (a+c x^2\right )^{3/2}}{5 c}+\frac {\int x (-2 a B+5 A c x) \sqrt {a+c x^2} \, dx}{5 c}\\ &=\frac {B x^2 \left (a+c x^2\right )^{3/2}}{5 c}-\frac {(8 a B-15 A c x) \left (a+c x^2\right )^{3/2}}{60 c^2}-\frac {(a A) \int \sqrt {a+c x^2} \, dx}{4 c}\\ &=-\frac {a A x \sqrt {a+c x^2}}{8 c}+\frac {B x^2 \left (a+c x^2\right )^{3/2}}{5 c}-\frac {(8 a B-15 A c x) \left (a+c x^2\right )^{3/2}}{60 c^2}-\frac {\left (a^2 A\right ) \int \frac {1}{\sqrt {a+c x^2}} \, dx}{8 c}\\ &=-\frac {a A x \sqrt {a+c x^2}}{8 c}+\frac {B x^2 \left (a+c x^2\right )^{3/2}}{5 c}-\frac {(8 a B-15 A c x) \left (a+c x^2\right )^{3/2}}{60 c^2}-\frac {\left (a^2 A\right ) \text {Subst}\left (\int \frac {1}{1-c x^2} \, dx,x,\frac {x}{\sqrt {a+c x^2}}\right )}{8 c}\\ &=-\frac {a A x \sqrt {a+c x^2}}{8 c}+\frac {B x^2 \left (a+c x^2\right )^{3/2}}{5 c}-\frac {(8 a B-15 A c x) \left (a+c x^2\right )^{3/2}}{60 c^2}-\frac {a^2 A \tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{8 c^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.15, size = 87, normalized size = 0.84 \begin {gather*} \frac {\sqrt {a+c x^2} \left (-16 a^2 B+6 c^2 x^3 (5 A+4 B x)+a c x (15 A+8 B x)\right )+15 a^2 A \sqrt {c} \log \left (-\sqrt {c} x+\sqrt {a+c x^2}\right )}{120 c^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^2*(A + B*x)*Sqrt[a + c*x^2],x]

[Out]

(Sqrt[a + c*x^2]*(-16*a^2*B + 6*c^2*x^3*(5*A + 4*B*x) + a*c*x*(15*A + 8*B*x)) + 15*a^2*A*Sqrt[c]*Log[-(Sqrt[c]
*x) + Sqrt[a + c*x^2]])/(120*c^2)

________________________________________________________________________________________

Maple [A]
time = 0.55, size = 96, normalized size = 0.92

method result size
risch \(\frac {\left (24 B \,c^{2} x^{4}+30 A \,c^{2} x^{3}+8 a B c \,x^{2}+15 a A c x -16 a^{2} B \right ) \sqrt {c \,x^{2}+a}}{120 c^{2}}-\frac {a^{2} A \ln \left (\sqrt {c}\, x +\sqrt {c \,x^{2}+a}\right )}{8 c^{\frac {3}{2}}}\) \(80\)
default \(B \left (\frac {x^{2} \left (c \,x^{2}+a \right )^{\frac {3}{2}}}{5 c}-\frac {2 a \left (c \,x^{2}+a \right )^{\frac {3}{2}}}{15 c^{2}}\right )+A \left (\frac {x \left (c \,x^{2}+a \right )^{\frac {3}{2}}}{4 c}-\frac {a \left (\frac {x \sqrt {c \,x^{2}+a}}{2}+\frac {a \ln \left (\sqrt {c}\, x +\sqrt {c \,x^{2}+a}\right )}{2 \sqrt {c}}\right )}{4 c}\right )\) \(96\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(B*x+A)*(c*x^2+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

B*(1/5*x^2*(c*x^2+a)^(3/2)/c-2/15*a/c^2*(c*x^2+a)^(3/2))+A*(1/4*x*(c*x^2+a)^(3/2)/c-1/4*a/c*(1/2*x*(c*x^2+a)^(
1/2)+1/2*a/c^(1/2)*ln(c^(1/2)*x+(c*x^2+a)^(1/2))))

________________________________________________________________________________________

Maxima [A]
time = 0.28, size = 86, normalized size = 0.83 \begin {gather*} \frac {{\left (c x^{2} + a\right )}^{\frac {3}{2}} B x^{2}}{5 \, c} + \frac {{\left (c x^{2} + a\right )}^{\frac {3}{2}} A x}{4 \, c} - \frac {\sqrt {c x^{2} + a} A a x}{8 \, c} - \frac {A a^{2} \operatorname {arsinh}\left (\frac {c x}{\sqrt {a c}}\right )}{8 \, c^{\frac {3}{2}}} - \frac {2 \, {\left (c x^{2} + a\right )}^{\frac {3}{2}} B a}{15 \, c^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(B*x+A)*(c*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

1/5*(c*x^2 + a)^(3/2)*B*x^2/c + 1/4*(c*x^2 + a)^(3/2)*A*x/c - 1/8*sqrt(c*x^2 + a)*A*a*x/c - 1/8*A*a^2*arcsinh(
c*x/sqrt(a*c))/c^(3/2) - 2/15*(c*x^2 + a)^(3/2)*B*a/c^2

________________________________________________________________________________________

Fricas [A]
time = 3.07, size = 175, normalized size = 1.68 \begin {gather*} \left [\frac {15 \, A a^{2} \sqrt {c} \log \left (-2 \, c x^{2} + 2 \, \sqrt {c x^{2} + a} \sqrt {c} x - a\right ) + 2 \, {\left (24 \, B c^{2} x^{4} + 30 \, A c^{2} x^{3} + 8 \, B a c x^{2} + 15 \, A a c x - 16 \, B a^{2}\right )} \sqrt {c x^{2} + a}}{240 \, c^{2}}, \frac {15 \, A a^{2} \sqrt {-c} \arctan \left (\frac {\sqrt {-c} x}{\sqrt {c x^{2} + a}}\right ) + {\left (24 \, B c^{2} x^{4} + 30 \, A c^{2} x^{3} + 8 \, B a c x^{2} + 15 \, A a c x - 16 \, B a^{2}\right )} \sqrt {c x^{2} + a}}{120 \, c^{2}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(B*x+A)*(c*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

[1/240*(15*A*a^2*sqrt(c)*log(-2*c*x^2 + 2*sqrt(c*x^2 + a)*sqrt(c)*x - a) + 2*(24*B*c^2*x^4 + 30*A*c^2*x^3 + 8*
B*a*c*x^2 + 15*A*a*c*x - 16*B*a^2)*sqrt(c*x^2 + a))/c^2, 1/120*(15*A*a^2*sqrt(-c)*arctan(sqrt(-c)*x/sqrt(c*x^2
 + a)) + (24*B*c^2*x^4 + 30*A*c^2*x^3 + 8*B*a*c*x^2 + 15*A*a*c*x - 16*B*a^2)*sqrt(c*x^2 + a))/c^2]

________________________________________________________________________________________

Sympy [A]
time = 4.08, size = 165, normalized size = 1.59 \begin {gather*} \frac {A a^{\frac {3}{2}} x}{8 c \sqrt {1 + \frac {c x^{2}}{a}}} + \frac {3 A \sqrt {a} x^{3}}{8 \sqrt {1 + \frac {c x^{2}}{a}}} - \frac {A a^{2} \operatorname {asinh}{\left (\frac {\sqrt {c} x}{\sqrt {a}} \right )}}{8 c^{\frac {3}{2}}} + \frac {A c x^{5}}{4 \sqrt {a} \sqrt {1 + \frac {c x^{2}}{a}}} + B \left (\begin {cases} - \frac {2 a^{2} \sqrt {a + c x^{2}}}{15 c^{2}} + \frac {a x^{2} \sqrt {a + c x^{2}}}{15 c} + \frac {x^{4} \sqrt {a + c x^{2}}}{5} & \text {for}\: c \neq 0 \\\frac {\sqrt {a} x^{4}}{4} & \text {otherwise} \end {cases}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(B*x+A)*(c*x**2+a)**(1/2),x)

[Out]

A*a**(3/2)*x/(8*c*sqrt(1 + c*x**2/a)) + 3*A*sqrt(a)*x**3/(8*sqrt(1 + c*x**2/a)) - A*a**2*asinh(sqrt(c)*x/sqrt(
a))/(8*c**(3/2)) + A*c*x**5/(4*sqrt(a)*sqrt(1 + c*x**2/a)) + B*Piecewise((-2*a**2*sqrt(a + c*x**2)/(15*c**2) +
 a*x**2*sqrt(a + c*x**2)/(15*c) + x**4*sqrt(a + c*x**2)/5, Ne(c, 0)), (sqrt(a)*x**4/4, True))

________________________________________________________________________________________

Giac [A]
time = 1.92, size = 81, normalized size = 0.78 \begin {gather*} \frac {A a^{2} \log \left ({\left | -\sqrt {c} x + \sqrt {c x^{2} + a} \right |}\right )}{8 \, c^{\frac {3}{2}}} + \frac {1}{120} \, \sqrt {c x^{2} + a} {\left ({\left (2 \, {\left (3 \, {\left (4 \, B x + 5 \, A\right )} x + \frac {4 \, B a}{c}\right )} x + \frac {15 \, A a}{c}\right )} x - \frac {16 \, B a^{2}}{c^{2}}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(B*x+A)*(c*x^2+a)^(1/2),x, algorithm="giac")

[Out]

1/8*A*a^2*log(abs(-sqrt(c)*x + sqrt(c*x^2 + a)))/c^(3/2) + 1/120*sqrt(c*x^2 + a)*((2*(3*(4*B*x + 5*A)*x + 4*B*
a/c)*x + 15*A*a/c)*x - 16*B*a^2/c^2)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int x^2\,\sqrt {c\,x^2+a}\,\left (A+B\,x\right ) \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(a + c*x^2)^(1/2)*(A + B*x),x)

[Out]

int(x^2*(a + c*x^2)^(1/2)*(A + B*x), x)

________________________________________________________________________________________